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Abstract

Zero-shot translation methods allow neural ma-
chine translation to succeed even when there is
a lack of parallel data for a particular language
pair. We build upon prior work to perform
low-resource zero-shot translation across seven
Indian languages spread across two language
families. We analyze their translation quality,
then turn to analyzing their performance from
the lens of language similarity. Specifically,
we examine the correlation between various
similarity metrics and the translation quality
in the zero-shot setting. We find that for Indo-
Aryan languages, language similarity can be a
good predictor for the quality of the translation.
Out-of-family translations, such as from Telugu
to an Indo-Aryan language, can be correlated
with language similarity as well. Geographi-
cal proximity and Levenshtein distance seem
to play the biggest role in translation quality in
the zero-shot setting.

1 Introduction

Low-resource languages struggle to achieve the
high performance promised by neural machine
translation due to the limited amounts of data that
can be used for training. This calls for new avenues
to enable machine translation for languages where
there is no data. Low-resource machine transla-
tion is especially important for Indian languages.
According to Banerjee et al. (2005), there are 325
languages that are used within communities in In-
dia, and 31 of them are each spoken by over one
million people in India. Yet, only four of those lan-
guages are classified as level 3 or above by Joshi
et al. (2020) while all other Indian languages are
low-resource.

There is especially a lack of parallel data be-
tween Indian languages; most of the parallel data
for Indian languages is paired with English. While
work in translating Indian languages to and from
English is important, the people of India also re-
quire translations for Indian languages they do not

speak. The 2011 Census of India reported that
nearly 500 million Indians were domestic migrants,
showcasing the importance of translation services
just within India.

One approach for translating between languages
where there is no parallel data is to use zero-shot
translation. As proposed in Johnson et al. (2017),
in the zero-shot setting we have two languages, X
and Y, which are paired with a third language Z.
The model is trained on sentence pairs from X-Z
and Y-Z in both directions. At test time, the model
should be able to translate X-Y in both directions
without ever seeing the data during train time.

The work in this paper is built upon the work
done by Huidrom and Lepage (2020). In their work,
they perform single model, multilingual model, and
zero-shot model experiments using four Indian lan-
guages languages from the PMIndia dataset (Had-
dow and Kirefu, 2020): Assamese, Bengali, Hindi,
and Manipuri. The data is low-resource, with train-
ing being done with just 5,000 sentences per lan-
guage pair. Their zero-shot work focuses only on
translating from Manipuri to X (one of the other
three languages), as Manipuri is the lowest resource
language they look at.

We start by replicating a portion of Huidrom and
Lepage (2020) to make sure our experimental setup
is the same. We then perform an extension study
motivated by the points they make in their analy-
sis of zero-shot translation in Indian languages. In
their work, they find the most success doing zero-
shot translations from Manipuri to Bengali, which
they attribute to the fact that Bengali has lexical
influence over Manipuri. This poses an interesting
question of how much zero-shot translation perfor-
mance depends on language similarities.

Our work is specifically interested in answering
the following question: How do different similarity
measures between two Indian languages impact the
performance of zero-shot translation between those
languages? In particular, we perform experiments



for zero-shot translations across seven different lan-
guages - resulting in 21 language pairs - and ana-
lyze their results along with metrics of similarities.
All experiments are done in the same low-resource
setting as Huidrom and Lepage (2020).

The question posed is important because it al-
lows us generalize their zero-shot findings for other
common-but-low-resource Indian languages. This
work also aims to put languages other than Hindi
in the spotlight in hopes of garnering attention in
future work towards increasing the resource level
for those other languages. In addition, our work
could enable future research in improving machine
translation systems for similar languages where
there is not much parallel data. Lastly, research on
other languages that are similar, such as Spanish
and Portuguese, may benefit from these findings.

2 Indian Language Similarities

Noting that similarities in languages may play a
role in translation quality, we turn to Kumar et al.
(2021) to examine similarities in Indian languages.
This work uses nine languages (the seven we use
here along with Bengali and Marathi) and performs
various string matching algorithms between lan-
guage pairs to generate similarity scores for ev-
ery pair. The algorithms used are token overlap,
Levenshtein distance (Levenshtein, 1966), longest
common subsequence (Larsen, 1998), and shingle
(q-gram) similarity (Kondrak, 2005).

Using the results from Kumar et al. (2021) and
higher-level similarity metrics, such as language-
family and geographical proximity, we compare
the similarity scores to our model’s performance
to reveal insights about similarities and zero-shot
translations.

3 Experimental Setup

3.1 Data
We use the PMIndia dataset (Haddow and Kirefu,
2020) for all of our experiments. The dataset con-
sists of monolingual data for 13 Indian languages
and parallel data for the same 13 Indian languages
paired with English. All of the data comes from of-
ficial documents from the Prime Minister’s Office
of the Government of India.

We use parallel data for seven of the Indian lan-
guages provided by the dataset. The languages
are chosen by language family in order to perform
experiments within and across different language
families. We choose four Indo-Aryan languages:

Language Pair Sentences Pairs
gu-en 50,380
hi-en 56,831
pa-en 34,699
ur-en 11,167
ml-en 33,669
ta-en 39,526
te-en 40,283

Table 1: Unique sentences pairs for each of the Indian
Language-English parallel data we use. The first four
are the Indo-Aryan languages, and the last three are
Dravidian languages.

Gujarati (gu), Hindi (hi), Punjabi (pa), and Urdu
(ur), and three Dravidian languages: Malayalam
(ml), Tamil (ta), and Telugu (te). The reason for
these specific languages was the authors’ familiar-
ity with the languages to assist with certain evalua-
tions. Additionally, all the languages chosen were
analyzed by Haddow and Kirefu (2020). Table 1
shows the number of unique sentence pairs for each
of the language pairs we use. All language pairs
have less than 60,000 sentence pairs, as we are in
the low-resource setting.

We use the same dataset split as Huidrom and
Lepage (2020). For each model, we have 4 lan-
guage pairs using English (en) and the two Indian
languages (in1, in2): en-in1, in1-en, en-in2, and
in2-en. For each language pair, we randomly se-
lect 7,000 sentences, which are then broken up into
5,000 sentences for training and 1,000 sentences
each for validation and testing. An important thing
to note here is that pivoting using English is not
done because there are a limited number of shared
sentences across the language pairs. We add an
artificial token to the beginning of each source sen-
tence to indicate the source and target language.
For example, if we are translating from English to
Hindi, we add <en2hi> to the beginning of the
sentence.

3.2 Tools
We use the OpenNMT-py toolkit (Klein et al., 2017)
for all of the experiments in order to replicate the
pre-processing of the data and the model struc-
ture that was used by Huidrom and Lepage (2020).
We write YAML scripts with the data location
and training parameters, which OpenNMT-py uses
to build the vocabulary and train the model. We
also use subword-nmt for data pre-processing
and sacreBLEU (Post, 2018) for evaluation using



Model Parameters
RNN Size 500
Encoder Type BRNN
Decoder Type RNN
Layers 2
Attention Global
Dropout 0.3

Optimization
Batch Type Sentence
Batch Size 64
Optimizer Adam
Learning Rate 0.001

Table 2: Main model parameters for the default model
provided by OpenNMT-py. We use this model as it is
what is used by Huidrom and Lepage (2020)

BLEU (Papineni et al., 2002).
We ran all of the models on Google Colaboratory

Pro (Colab) utilizing their GPU resources. The
type of GPU varied between a Tesla T4 or a Tesla
P100-PCIE-16GB. This was based on what was
provided by Colab. Using either GPU gave us
similar runtimes for training, with the average train
time being just under 25 minutes.

Our yaml templates can be found on our Github1,
while the data generation, training, and testing code
can be found on our Google Colab2.

3.3 Model
We use the default model that is provided by
OpenNMT-py. The model used is a 2-layer seq2seq
architecture that uses global attention. The en-
coder is a bidirectional LSTM and the decoder is
an LSTM. Both layers have 500 hidden units. The
full hyperparameters are presented in Table 2. The
default model starts learning rate decay at 50,000
training steps, but the model is only run for 10,000
steps. Therefore, there is no learning rate decay
during our training.

3.4 Training
For each language pair, we first randomly gener-
ate the necessary training, validation, and testing
datasets. Next, the training data is concatenated
and we apply Byte-Pair Encoding (BPE) to all the
data with 10,000 merge operations. The necessary
training token is then pre-appended to all of the
source sentences based on the source and target

1https://github.com/amanjaiman/ILTUZ
2https://colab.research.google.com/drive/13Htu7-

8Bz0hLnkiJ3givQfTJCgpi5RCk?usp=sharing

Initial Setup X -> En, En -> X,
Y -> En, En -> Y

Better translation
from X to Y

X -> En, En -> Y,
Y -> En -> En -> X

Better translation
from Y to X

Y -> En -> En -> X,
X -> En, En -> Y

Table 3: Initial training data setup was outperformed
heavily by the adjustments made. The language that
appeared first had better translations out of it during
test time. Here, En represents English while X and Y
represent two Indian Languages

language. We generate a shared vocabulary for our
languages using the OpenNMT-py scripts. Lastly,
We train the model for 10,000 steps, running vali-
dation every 1,000 training steps.

During our testing, we found that the order of
the languages in the training data can make a dif-
ference in the output of the model. Initially, the
training data was concatenated such that one In-
dian language paired with English appeared before
the other. When this was changed to incorporate
a seemingly transitive sequence (X -> En, En ->
Y), the model performance increased. Moreover,
changing the order of the languages made perfor-
mance increase: translating from the language that
appears first was better than translating from the
second language. Examples of our training data
setup are presented in Table 3.

We end up with 28 models, one for each lan-
guage pair. The models are evaluated on the respec-
tive test sets using BLEU.

4 Results

We do two initial experiments to ensure our train-
ing setup is the same as that presented in Huidrom
and Lepage (2020). The first is replicating their
multilingual model by training one model on eight
language pairs using the four languages they use
paired with English. The second is recreating the
zero-shot experiment from Manipuri to Hindi, to
verify our results. Both experiments produce com-
parable results to the original findings, so we move
forward with our experiments.

The BLEU scores for each zero-shot translation
is shown in Table 4. We notice some general trends
in the results. There are some languages that do
better as source languages and some that do better
as target languages. For example, Telugu does well
translating to the Indo-Aryan languages, but the

https://github.com/amanjaiman/ILTUZ
https://colab.research.google.com/drive/13Htu7-8Bz0hLnkiJ3givQfTJCgpi5RCk?usp=sharing
https://colab.research.google.com/drive/13Htu7-8Bz0hLnkiJ3givQfTJCgpi5RCk?usp=sharing


BLEU scores are lower when the Indo-Aryan lan-
guages translate to Telugu. By contrast, translating
to Urdu yields better BLEU scores than translating
from Urdu.

Gu Hi Pa Ur Ml Ta Te
Gu x 2.0 1.0 1.2 0.3 0.2 0.7
Hi 2.2 x 1.0 0.8 0.3 0.2 0.6
Pa 1.0 0.5 x 0.7 0.2 1.0 0.1
Ur 0.9 0.7 0.8 x 0.2 0.8 0.3
Ml 0.8 1.1 1.2 1.2 x 0.2 0.1
Ta 0.8 0.9 2.0 1.3 0.1 x 0.1
Te 1.1 1.3 0.6 1.4 0.2 0.1 x

Table 4: BLEU Scores for all models. Source language
is on the left, target language is on top. We have split the
table into four quadrants to clearly show the inter-family
and outer-family translations.

Another thing we note is that the models pro-
duce extremely low BLEU scores overall. While
the actual 1-gram scores were higher, between 15-
18 BLEU, the models were not able to generate
proper sentence structure or lost some meaning
during the zero-shot translations. As shown in Ta-
ble 5, the zero-shot translation is able to produce
the correct script and keeps a lot of the same charac-
ters, but the sentence produced has lost its meaning.
While low, the scores are still on par with the re-
sults that Huidrom and Lepage (2020) got for their
zero-shot translations with similar amounts of data.
Increasing the data could increase performance,
and it could be done just for the target language, as
shown by Huidrom and Lepage (2020).

Translating into the Dravidian languages per-
formed worse compared to translating into the Indo-
Aryan languages, although translating from Dravid-
ian to Indo-Aryan languages produced convincing
results. These results are similar to those shown
in Dewangan et al. (2021), where Dravidian lan-
guages also do not perform as well. Our exper-
iments use much less data (46,000 compared to
5,000 training sentences) and are in a zero-shot
setting, so we expect our BLEU scores to be lower
while following the same trend. Translating within
the Dravidian languages was approaching 0, and
for this reason, we leave out Dravidian -> Dravid-
ian translations in the similarity analysis.

5 Similarity Analysis

First, we look at translation quality between the two
language families. For translating into Gujarati,

an Indo-Aryan language, we see that the BLEU
score is higher on average when the source lan-
guage is also from the same family. This result is
not shared across the other Indo-Aryan languages,
which goes against the findings of Dewangan et al.
(2021) where BLEU scores are higher when trans-
lating within the same language family. We hy-
pothesize that this may be due to it being in the
zero-shot setting or not having enough data in the
experiments, but future works needs to be done
to determine the reason. Indo-Aryan languages as
source languages do produce higher BLEU scores
when translating to other Indo-Aryan languages as
compared to Dravidian languages.

Another aspect of similarity we look at is geo-
graphical proximity, which we define by how far
apart the centers of the regions primarily speak-
ing the languages are. We find the best perfor-
mance when translating between Hindi and Gu-
jarati, which are two languages that are found ex-
tremely close to each other within India. Translat-
ing into Punjabi, another North Indian language,
is also better when the source language is Gujarati
and Hindi. When translating from Dravidian to
Indo-Aryan languages, Telugu performs the best
for three out of the four target languages. This
may be attributable to the geographic proximity
of Telugu, which is spoken in South Central India,
to the Indo-Aryan languages, which are found in
North and Central India. Malayalam and Tamil, by
contrast, are found at the Southern tip of India, and
do not perform as well as Telugu.

Next, we explore the relationship between the
various metrics explored by Kumar et al. (2021)
and how they relate to translation quality. Their
full results can be found in Figure 1 in Appendix A.
We use the similarity scores reported for the met-
rics along with the BLEU score from our work to
calculate the Pearson correlation coefficient ρ. For
each source language, we pair its target translation
BLEU score with the similarity between that target
language. The correlation scores are reported in
Table 6. We can see that for the Indo-Aryan lan-
guages, there is positive correlation between all of
the similarity metrics and translation quality (i.e.
the higher the similarity the better the output trans-
lation). For translating from Gujarati and Hindi
particularly, ρ is fairly high. We also note that us-
ing Levenshtein distance as the similarity metric
generally correlates better to higher BLEU scores,
with longest common subsequence and shingle q-



Table 5: Example zero-shot translation from Gujarati to Hindi. While the script is correctly translated, the meaning
of the sentence is lost.

gram following closely after. Using token overlap
seems to be the worst predictor of BLEU scores
among the similarity metrics.

Two languages, Malayalam and Tamil, do not
show positive correlation between BLEU and simi-
larity scores. We actually see these two languages
translating fairly well into the Indo-Aryan lan-
guages, which isn’t expected by the similarity met-
rics or geographical proximity. Meanwhile, Telugu
does show positive correlation. These results could
indicate that because Telugu is more similar to the
Indo-Aryan languages, the similarity score can ac-
tually be used as a predictor of BLEU score. When
the similarity score is too low, like for Malayalam
and Tamil, it may be harder to use it as a predictor.

Source TO LD LCS QGram
Gu 0.835 0.968 0.95 0.949
Hi 0.292 0.557 0.57 0.564
Pa 0.065 0.172 0.096 0.144
Ur 0.25 0.443 0.425 0.455
Ml -0.608 -0.79 -0.719 -0.787
Ta -0.051 -0.636 -0.523 -0.4
Te 0.555 0.499 0.287 0.401

Table 6: Pearson correlation coefficient between BLEU
for source languages and token overlap (TO), Leven-
shtein distance (LD), longest common subsequence
(LCS), and shingle q-gram (QGram).

6 Future Work

Our work opens the door for research in many ar-
eas related to this paper. To continue building upon
the work done by (Huidrom and Lepage, 2020)
we would want to explore the second part of their
zero-shot study, where the amount of training data
for the target language is increased in stages. In
their work this shows massive improvement for

the translation quality, improving their Manipuri
to Hindi BLEU score by over 7 times the original.
This increase in data could also be compared to
directly increasing the training data from the start.
We use 5,000 training sentences to stay consistent
with Huidrom and Lepage (2020), but increasing
the data in one of these ways may make it easier to
analyze how similarities play a role in the zero-shot
translations. Splitting up the low-resource setting
from the similarity analysis may prove fruitful to
gaining better insights in both respectively. Addi-
tionally, in this work we do not perform pivoting
because there is a lack of shared sentences between
the language pairs. If we increase the data size,
pivoting may be possible and could lead to better
translation results.

Indian languages tend to have a lot of regional
dialects. As a result, nearby neighborhoods may
struggle to properly understand each other’s lan-
guages. Looking into the specific dialects of the
data could lead to insights about potential issues
for translating. As an example, Hindi is spoken
in Rajasthan, but in a different style than in Delhi.
Rajasthan is closer to Gujarat, where Gujarati is
spoken, so translating to Gujarati from a Rajasthani
source could lead to better results than a Delhi
source. Similarity scores could be reproduced
based on regional dialects to allow for a greater
scope of analysis for Indian languages.

This work could also be applied to other lan-
guages. This would give us more data on the trans-
lation quality between language families and dif-
ferent regions of the world.

7 Conclusion

This work expands on the results from (Huidrom
and Lepage, 2020) by producing zero-shot results



for seven other Indian languages in the same low-
resource data and training regime. Our results are
similar to the zero-shot results shown in that pa-
per. We also explore language similarities in Indian
languages and see if similar languages produce
higher quality translations. We find promising re-
sults for Indo-Aryan languages, and in particular
see that language similarity is a good predictor for
translation quality when translating from Gujarati.
Similar conclusions can be drawn from translating
from Telugu, showing especially the importance of
geographical proximity when translating outside
of language families. More work needs to be done
for Dravidian languages, however, as translation
results were low when Malayalam and Tamil were
the target languages. With the current disconnect in
machine translation research and domestic Indian
communities, we hope this work can spur further
research in zero-shot translations for Indian lan-
guages.

References
P. Banerjee, S.B.R. Chaudhury, S.K. Das, and B. Ad-

hikari. 2005. Internal Displacement in South Asia:
The Relevance of the UN’s Guiding Principles.
SAGE Publications.

Shubham Dewangan, Shreya Alva, Nitish Joshi, and
Pushpak Bhattacharyya. 2021. Experience of neu-
ral machine translation between indian languages.
Machine Translation, 35:71–99.

Barry Haddow and Faheem Kirefu. 2020. Pmindia - a
collection of parallel corpora of languages of india.
ArXiv, abs/2001.09907.

Rudali Huidrom and Y. Lepage. 2020. Zero-shot trans-
lation among indian languages. In LORESMT.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Z. Chen, Nikhil Thorat, Fer-
nanda B. Viégas, Martin Wattenberg, Gregory S.
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics, 5:339–
351.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt: Open-

source toolkit for neural machine translation. In Proc.
ACL.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. SPIRE’05, page 115–126, Berlin, Heidelberg.
Springer-Verlag.

Sourav Kumar, Salil Aggarwal, Dipti Misra Sharma, and
R. Mamidi. 2021. How do different factors impact
the inter-language similarity? a case study on indian
languages. In ACL.

Kim Skak Larsen. 1998. Length of maximal common
subsequences. DAIMI Report Series, 21.

V.I. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions and reversals. Soviet Physics
Doklady, 10:707.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

https://books.google.com/books?id=VjGdDo75UssC
https://books.google.com/books?id=VjGdDo75UssC
https://doi.org/https://doi.org/10.1007/s10590-021-09263-3
https://doi.org/https://doi.org/10.1007/s10590-021-09263-3
https://doi.org/https://doi.org/10.48550/arXiv.2001.09907
https://doi.org/https://doi.org/10.48550/arXiv.2001.09907
https://aclanthology.org/2020.loresmt-1.7.pdf
https://aclanthology.org/2020.loresmt-1.7.pdf
https://doi.org/https://doi.org/10.1162/tacl_a_00065
https://doi.org/https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.1007/11575832_13
https://doi.org/10.1007/11575832_13
https://aclanthology.org/2021.acl-srw.12.pdf
https://aclanthology.org/2021.acl-srw.12.pdf
https://aclanthology.org/2021.acl-srw.12.pdf
https://doi.org/10.7146/dpb.v21i426.6740
https://doi.org/10.7146/dpb.v21i426.6740
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319


A Similarity Scores

Figure 1: Similarity matrix for the different algorithms.
From Kumar et al. (2021)


